Abstract
Pedestrians, bicyclists, and scooterists are Vulnerable Road Users (VRUs) in traffic accidents. The number of fatalities and injuries in traffic accidents involving vulnerable road users has been steadily increasing in the last two decades in the U.S., even though road vehicles now have perception sensors like cameras to detect risk and issue collision warnings or apply emergency braking. Perception sensors like cameras are highly affected by lighting and weather conditions. Cameras, radar, and lidar cannot detect vulnerable road users in partially occluded and occluded situations. This paper proposes the use of Vehicle-to-VRU communication to inform nearby vehicles of VRUs on trajectories with a potential collision risk. An Android smartphone app with low-energy Bluetooth (BLE) advertising is developed and used for this communication. The same app is also used to collect motion data of VRUs for training. VRU motion data are smoothed using a Kalman filter, and an LSTM neural network is used for future motion prediction. This information is used in an algorithm comparing Time-To-collision-Zone (TTZ) for the vehicle and VRU, and issues driver warnings with different severity levels. The warning severity level is based on the analysis of real data from a smart intersection for close vehicle and VRU interactions. The resulting driver warning system is demonstrated using proof-of-concept experiments. The method can easily be extended to a VRU collision-mitigation system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.