Abstract

Parkinson's disease, a neurodegenerative movement disorder characterized by selective degeneration of nigrostriatal dopaminergic neurons, affects approximately 1% of the population over 50. Because nicotinic acetylcholine receptors (nAChRs) may represent an important therapeutic target for this disorder, we performed experiments to elucidate the subtypes altered with nigrostriatal damage in parkinsonian monkeys. For this purpose we used (125)I-alpha-conotoxin MII (CtxMII), a relatively new ligand that identifies alpha3 and/or alpha6 subunits containing nAChR subtypes. In brain from untreated monkeys, there was saturable (125)I-alpha-CtxMII binding to a single population of high-affinity nicotinic sites (K(d) = 0.9 nm), primarily localized in the visual, habenula-interpeduncular, and nigrostriatal-mesolimbic pathways. Administration of the selective dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine resulted in damage to the nigrostriatal system and parkinsonism. Autoradiographic analysis showed that (125)I-alpha-CtxMII sites were selectively reduced (>/=99%) in the basal ganglia and that the lesion-induced decreases correlated well with declines in the dopamine transporter, a marker of dopaminergic neuron integrity. These findings may indicate that most or all of (125)I-alpha-CtxMII-labeled nAChR subtypes in the basal ganglia are present on nigrostriatal dopaminergic neurons, in contrast to (125)I-epibatidine sites. These data suggest that the development of ligands directed to nAChR subtypes containing alpha3 and/or alpha6 subunits may yield a novel treatment strategy for parkinsonian patients with nigrostriatal dopaminergic degeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call