Abstract

Valuation of soil carbon (C) regulating ecosystem services (ES) at the state level is important for sustainable C management. The objective of this study was to assess the value of regulating ES from soil organic carbon (SOC), soil inorganic carbon (SIC), and total soil carbon (TSC) stocks, based on the concept of the avoided social cost of carbon dioxide (CO2) emissions for the state of New Hampshire (NH) in the United States of America (USA) by soil order and county using information from the State Soil Geographic (STATSGO) database. The total estimated monetary mid-point value for TSC stocks in the state of New Hampshire was $73.0B (i.e., 73.0 billion U.S. dollars (USD), where B = billion = 109), $64.8B for SOC stocks, and $8.1B for SIC stocks. Soil orders with the highest midpoint value for SOC were Histosols ($33.2B), Spodosols ($20.2B), and Inceptisols ($10.1B). Soil orders with the highest midpoint value for SIC were Inceptisols ($5.8B), Spodosols ($1.0B), and Entisols ($770M, where M = million = 106). Soil orders with the highest midpoint value for TSC were Histosols ($33.8B), Spodosols ($21.2B), and Inceptisols ($15.9B). The counties with the highest midpoint SOC values were Rockingham ($15.4B), Hillsborough ($9.8B), and Coös ($9.2B). The counties with the highest midpoint SIC values were Merrimack ($1.2B), Coös ($1.1B), and Rockingham ($1.0B). The counties with the highest midpoint TSC values were Rockingham ($16.5B), Hillsborough ($10.8B), and Coös ($10.3B). New Hampshire has experienced land use/land cover (LULC) changes between 2001 and 2016. The changes in LULC across the state have not been uniform, but rather have varied by county, soil order, and pre-existing land cover. The counties that have exhibited the most development (e.g., Rockingham, Hillsborough, Merrimack) are those nearest the urban center of Boston, MA. Most soil orders have experienced losses in “low disturbance” land covers (e.g., evergreen forest, hay/pasture) and gains in “high disturbance” land covers (e.g., low-, medium-, and high-intensity developed land). In particular, Histosols are a high-risk carbon “hotspot” that contributes over 50% of the total estimated sequestration of SOC in New Hampshire while covering only 7% of the total land area. Integration of pedodiversity concepts with administrative units can be useful to design soil- and land-cover specific, cost-efficient policies to manage soil C regulating ES in New Hampshire at various administrative levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.