Abstract

We characterize the vulnerability of a linear network synchronization process to intrusion by an adversary that can actuate a single network component. Specifically, we model the intruder as seeking to move the state of the synchronization process to an undesirable value or set (which may or may not be known to system operators) via a local actuation. We evaluate the network vulnerability in terms of the whether or not the intruder can achieve its goal, and also the minimum actuation energy (or expected minimum energy, if the goal is unknown) required of the adversary to achieve the goal. We formalize that the required energy is related to the inverse of the controllability Gramian for the process, and statistics defined thereof (e.g., its trace and determinant). We then obtain explicit formulas for the Gramian inverse and its associated statistics. These explicit formulae yield interesting structural and graph-theoretic characterizations of the energy-based vulnerability measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.