Abstract

Aquatic ecosystems and their fauna are vulnerable to a variety of climate-related changes. Benthic macroinvertebrates are used frequently by water-quality agencies to monitor the status of aquatic resources. We used several regionally distributed state bioassessment data sets to analyze how climate change might influence metrics used to define ecological condition of streams. Many widely used, taxonomically based metrics were composed of both cold- and warm-water-preference taxa, and differing responses of these temperature-preference groups to climate-induced changes in stream temperatures could undermine assessment of stream condition. Climate responsiveness of these trait groups varied among states and ecoregions, but the groups generally were sensitive to changing temperature conditions. Temperature sensitivity of taxa and their sensitivity to organic pollution were moderately but significantly correlated. Therefore, metrics selected for condition assessments because taxa are sensitive to disturbance or to conventional pollutants also were sensitive to changes in temperature. We explored the feasibility of modifying metrics by partitioning components based on temperature sensitivity to reduce the likelihood that responses to climate change would confound responses to impairment from other causes and to facilitate tracking of climate-change-related taxon losses and replacements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call