Abstract
Various decentralized applications have deployed millions of smart contracts (SCs) on the Blockchain networks. SCs enable programmable transactions involving the transfer of monetary assets between peers on a Blockchain network without any need to a central authority. However, similar to any software program, SCs may contain security issues. Software se-curity engineers and researchers have already uncovered several Ethereum BlockChain and SC vulnerabilities. Still, researchers continuously discover many more security flaws in deployed SCs. Indeed, the popularity of SCs attracts adversaries to launch new attack vectors. Thus, efficient vulnerability detection is necessary. This paper lists broad known vulnerabilities in SCs and classifies them based on the multi-class categories such as Suicidal, Prodigal, Greedy, and Normal SCs. The paper adopts artificial recurrent neural network architecture such as Long Short-Term Memory (LSTM) and Temporal Convolutional Network (TCN) used in deep learning to identify and then classify vulnerable Scs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.