Abstract

In the context of global warming, frequent heat wave disasters have seriously threatened the safety of human life and property. The urban agglomeration, as the main region with a high concentration of population and economy, is susceptible to heat weaves due to the existing urban heat island effect. In this study, we investigated the temporal and spatial characteristics of heat waves (heat index, HI) in China from 2000 to 2020 and assess the vulnerability of 19 urban agglomerations to heat waves from the perspective of exposure, sensitivity and adaptability. The results show that: (1) In the past 20 years, the frequency and intensity of HI (greater than 26.67 °C) both showed an upward trend. (2) Shandong Peninsula, Central Henan, Yangtze River Delta, Middle Reaches of Yangtze River, and Mid-southern Liaoning urban agglomerations always maintain a high vulnerability. (3) From 2000 to 2020, the vulnerability of Beijing-Tianjin-Hebei, Yangtze River Delta, Chengdu-Chongqing, Middle reaches of Yangtze River, Guangdong-Fujian-Zhejiang, Harbin-Changchun and Mid-southern Liaoning urban agglomerations were always dominated by exposure. The vulnerability of Shandong Peninsula, Beibu Gulf and Central Henan urban agglomeration has always been dominated by sensitivity. The vulnerability of North Tianshan Mountain, Lanzhou-Xining, Guanzhong and Hu-Bao-E-Yu urban agglomeration has always been dominated by inadequate adaptability. (4) Recently, the factors that contributed most to exposure, sensitivity and adaptability were population density, the proportion of outdoor workers and water supply, with contribution rates of 38%, 55% and 26%, respectively. This study can provide a scientific basis for the rational allocation of resources among urban agglomerations, effectively formulating policies and guiding population migration from high temperature disasters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call