Abstract

<p class="Abstract"><span lang="EN-US">A specialized genetic algorithm applied to the solution of the electric grid interdiction problem is presented in this paper. This problem consists in the interaction of a disruptive agent who aims at maximizing damage of the power system (measured as load shed), and the system operator, who implements corrective actions to minimize system load shed. This problem, also known as “the terrorist threat problem”, is formulated in a bilevel programming structure and solved by means of a genetic algorithm. The solution identifies the most vulnerable links of the network in terms of a terrorist attack, providing signals for future reinforcement of the network or more strict surveillance of critical elements. The proposed approach has been tested on three case studies: a didactic five-bus power system, a prototype of the Colombian power system and the IEEE Reliability Test System. Results show the robustness and applicability of the proposed approach.</span></p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call