Abstract
With the increasing complexity of environments and the diversity of task chains, individual unmanned aerial vehicles (UAVs) often struggle to satisfy the demands of task chains, including load capacity improvement, information perception, and information procession. In complex task chains involving various UAVs, such as area reconnaissance and fire rescue, any attack on critical UAVs can greatly disrupt the execution of the entire task chain by causing equipment damage or connectivity disruption. To ensure network resilience post attack, identifying vulnerable nodes in the UAV network becomes crucial. In this paper, a Vulnerability-based Topology Reconstruction Mechanism (VUTRM) is proposed to rank the importance of nodes in task chains and formulate a topology reconstruction. It consists of two parts: the first part is a Multi-metric Node Vulnerability Assessment Algorithm (MENVAL) used to rank the importance of nodes in task chains, and the second part is a Node Importance-based Topology Reconstruction Algorithm (NITRA) used to reconstruct the UAV network with the obtained node ranking. Finally, simulations carried out with simulation software demonstrate that our proposed method accurately identifies network vulnerabilities and promptly implements effective reconstruction measures to minimize network damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.