Abstract

Abstract In continuation of earlier work with natural rubber, the kinetics of sulfur decrease were studied in certain synthetic rubbers for different temperatures and sulfur concentrations. At the same time the formation of polysulfide bound sulfur was studied, using as example the reaction of sulfur with natural rubber and synthetic rubbers. It was found that: 1) When the decrease in sulfur concentration is portrayed by curves which are convex to the time axis (Perbunan), the 0.6th order time-law is fulfilled, (as in the case of natural rubber independent of temperature and concentration. 2) In contrast, the concentration dependence of the rate at which sulfur decreases, both in Perbunan and cis 1,4-polybutadiene, denotes a first-order reaction in agreement with experience with natural rubber. 3) The activation energy of sulfur decrease has the same magnitude for all the elastomers investigated (34 to 36 kcal/mole). 4) The disagreement between the time law and the concentration dependence of the rate of sulfur disappearance encountered in all the experiments with 1,5-polyenes, is interpreted as indicating autocatalysis, which likewise explains the shape of the curves for sulfur disappearance. 5) Sulfur reacts considerably faster in natural rubber and Perbunan than in cis 1,4-polybutadiene; consequently a homolytic dissociation of the S8-ring cannot be rate-determining. 6) Polysulfide sulfur shows, in each case, a maximum with reaction time, and in completely reacted vulcanizates it tends toward a limiting value. An equation was found, which provides a good description of change with time of polysulfide concentration (natural rubber and cis 1,4-polybutadiene). 7) An explanation is given for the appearance of the polysulfide maximum; and how the reaction of sulfur with 1,5-polyenes can be represented, making use of all available results, is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call