Abstract

The Vienna Schrodinger-Poisson (VSP) simulation framework for quantum-electronic engineering applications is presented. It is an extensive software tool that includes models for band structure calculation, self-consistent carrier concentrations including strain, mobility, and transport in transistors and heterostructure devices. The basic physical models are described. Through flexible combination of basic models sophisticated simulation setups for particular problems are feasible. The numerical tools, methods and libraries are presented. A layered software design allows VSP's existing components such as models and solvers to be combined in a multitude of ways, and new components to be added easily. The design principles of the software are explained. Software abstraction is divided into the data, modeling and algebraic level resulting in a flexible physical modeling tool. The simulator's capabilities are demonstrated with real-world simulation examples of tri-gate and nanoscale planar transistors, quantum dots, resonant tunneling diodes, and quantum cascade detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.