Abstract

The aerodynamic heating of a super orbital reentry capsule for MUSES-C is numerically studied by using full viscous-shock-layer (VSL) equations with an 11 air-species model. With a three-temperature model, the thermal nonequilibrium effect is considered. Temperatures, chemical species, and energy exchange rates at three typical altitudes, 74 km, 64 km, and 54 km, are discussed to understand how thermochemical nonequilibrium phenomena change along the reentry trajectory path. The convective and radiative heat fluxes to the wall of the MUSES-C capsule with a 0.2 m nose radius are examined under both noncatalytic wall (NCW) and fully catalytic wall (FCW) conditions. The maximum heat fluxes estimated for FCW and NCW are 8.7 MW/m2 and 6.1 MW/m2 at the altitude of 56 km. The radiative heat flux at the stagnation point of the capsule has also been calculated, and the maximum radiative heat flux of 0.9 MW/m2 has been found at the altitude of 62 km. The intensity of UV and VUV spectra are extremely intense; thus UV and VUV spectra mainly contribute to the radiative heat flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.