Abstract

In this work we show how the VSCF method may be successfully used to describe all fundamental vibrational transitions of several isotopologs of water dimer. By expressing the normal mode displacements in terms of appropriate delocalized internal coordinates we are able to minimize the mode-mode coupling in the PES and thus yield PT2-VSCF frequencies in good agreement with the experiment. The use of curvilinear normal modes is of paramount importance to describe vibrational transitions of the very soft intermolecular modes. Within our approach the maximum calculated error for the (H2O)2 intermolecular frequencies are reduced from 311cm−1 (Cartesian normal modes) to just 56cm−1 (curvilinear normal modes). Plots of the diagonal intermolecular potential and of the vibrational wave function illustrate the remarkable effect of different coordinate systems. In conclusion, our PT2-VSCF calculations provide a fair anharmonic description of the fundamental transitions of water dimers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.