Abstract

Vehicle trajectory prediction is an important decision-making and planning basis for autonomous driving systems that enables them to drive safely and efficiently. To accurately predict vehicle trajectories, the complex representations and dynamic interactions among the elements in a traffic scene are abstracted and modelled. This paper presents vehicle–road relationships net, a deep learning network that extracts features from vehicle–road relationships and models the effects of traffic environments on vehicles. The introduction of geographic highway information and the calculation of spatiotemporal distances with a reference not only unify heterogeneous vehicle–road relationship representations into a time series vector but also reduce the requirement for sensing transient changes in the surrounding area. A hierarchical long short-term memory network extracts environmental features from two perspectives—social interactions and road constraints—and predicts the future trajectories of vehicles by their manoeuvre categories. Accordingly, vehicle–road relationships net fully exploits the contributions of historical trajectories and integrates the effects of road constraints to achieve performance that is comparable to or better than that of state-of-the-art methods on the next-generation simulation dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.