Abstract

BackgroundIn order to clarify the origin of spring growth habit in modern domesticated wheat, allelic variability of the VRN-1 gene was investigated in a wide set of accessions of the wild tetraploid species Triticum dicoccoides (BBAA), together with diploid species T. monococcum, T. boeoticum and T. urartu, presumable donors of the A genome to polyploid wheats.ResultsNo significant variation was found at the VRN-B1 locus of T. dicoccoides, whereas at VRN-A1 a number of previously described alleles were found with small deletions in the promoter (VRN-A1b, VRN-A1d) or a large deletion in the first (1st) intron (VRN-A1L). The diploid A genome species were characterized by their own set of VRN-1 alleles including previously described VRN-A1f and VRN-A1h alleles with deletions in the promoter region and the VRN-A1ins allele containing a 0.5 kb insertion in the 1st intron. Based on the CAPS screening data, alleles VRN-A1f and VRN-A1ins were species-specific for T. monococcum, while allele VRN-A1h was specific for T. boeoticum. Different indels were revealed in both the promoter and 1st intron of the recessive VRN-A1u allele providing specific identification of T. urartu, the proposed donor of the A genome to modern wheat. We found that alleles VRN-A1b and VRN-A1h, previously described as dominant, have either no or weak association with spring growth habit, while in some diploid accessions this habit was associated with the recessive VRN-A1 allele.ConclusionsSpring growth habit in diploid wheats was only partially associated with indels in regulatory regions of the VRN-1 gene. An exception is T. monococcum where dominant mutations in both the promoter region and, especially, the 1st intron were selected during domestication resulting in a greater variety of spring forms. The wild tetraploid T. dicoccoides had a distinct set of VRN-A1 alleles compared to the diploids in this study, indicating an independent origin of spring tetraploid forms that likely occurred after combining of diploid genomes. These alleles were subsequently inherited by cultivated polyploid (tetraploid and hexaploid) descendants.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0473-x) contains supplementary material, which is available to authorized users.

Highlights

  • In order to clarify the origin of spring growth habit in modern domesticated wheat, allelic variability of the VRN-1 gene was investigated in a wide set of accessions of the wild tetraploid species Triticum dicoccoides (BBAA), together with diploid species T. monococcum, T. boeoticum and T. urartu, presumable donors of the A genome to polyploid wheats

  • T. urartu is considered as the donor of A genome to the wild tetraploid species: T. dicoccoides (BBAA) and T. araraticum (GGAA) [9], which was subsequently inherited by other important polyploid wheat species including T. durum (BBAA), T. timopheevii (GGAA), and common wheat T. aestivum (BBAADD)

  • VRN-1 allelic variability in wild tetraploid wheat T. dicoccoides Promoter region Vernalization sensitivity in tetraploid wheat T. dicoccoides is controlled by alleles at the 2 homoeologous loci, VRN-A1 and VRN-B1

Read more

Summary

Introduction

In order to clarify the origin of spring growth habit in modern domesticated wheat, allelic variability of the VRN-1 gene was investigated in a wide set of accessions of the wild tetraploid species Triticum dicoccoides (BBAA), together with diploid species T. monococcum, T. boeoticum and T. urartu, presumable donors of the A genome to polyploid wheats. Potential sources of the A genome are represented by three closely related species: T. urartu Tum. ex Gandil., T. boeoticum Boiss. T. urartu is considered as the donor of A genome to the wild tetraploid species: T. dicoccoides (BBAA) and T. araraticum (GGAA) [9], which was subsequently inherited by other important polyploid wheat species including T. durum (BBAA), T. timopheevii (GGAA), and common wheat T. aestivum (BBAADD).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call