Abstract

Plasmacytoid dendritic cells (pDCs) constitute a major source of type-I interferon (IFN-I) production during acute HIV infection. Their activation results primarily from TLR7-mediated sensing of HIV-infected cells. However, the interactions between HIV-infected T cells and pDCs that modulate this sensing process remain poorly understood. BST2/Tetherin is a restriction factor that inhibits HIV release by cross-linking virions onto infected cell surface. BST2 was also shown to engage the ILT7 pDC-specific inhibitory receptor and repress TLR7/9-mediated IFN-I production by activated pDCs. Here, we show that Vpu, the HIV-1 antagonist of BST2, suppresses TLR7-mediated IFN-I production by pDC through a mechanism that relies on the interaction of BST2 on HIV-producing cells with ILT7. Even though Vpu downregulates surface BST2 as a mean to counteract the restriction on HIV-1 release, we also find that the viral protein re-locates remaining BST2 molecules outside viral assembly sites where they are free to bind and activate ILT7 upon cell-to-cell contact. This study shows that through a targeted regulation of surface BST2, Vpu promotes HIV-1 release and limits pDC antiviral responses upon sensing of infected cells. This mechanism of innate immune evasion is likely to be important for an efficient early viral dissemination during acute infection.

Highlights

  • Plasmacytoid dendritic cells are a distinct subset of DCs that exhibit a unique ability to secrete high amounts of interferons and other cytokines in response to viruses

  • We investigated whether HIV-1 could regulate the antiviral responses of Plasmacytoid dendritic cells (pDCs) triggered upon sensing of infected cells

  • We show that HIV-1 suppresses the levels of IFN-I produced by pDCs through a process that requires expression of the viral protein U (Vpu) accessory protein in virus-producing cells

Read more

Summary

Introduction

Plasmacytoid dendritic cells (pDCs) are a distinct subset of DCs that exhibit a unique ability to secrete high amounts of interferons and other cytokines in response to viruses. Even though they constitute less than 1% of the total cell content of peripheral blood in humans, they are considered a primary source of type-I IFN (IFN-I) for antiviral responses. High concentrations of purified HIV virions are capable of inducing IFN-I from pDCs, HIV-infected CD4+ T cells are much more effective at stimulating these IFN-producing cells (10-100-fold relative to cellfree virus) given their ability to establish cell contacts with them [6,8,10]. Potent recognition of cell-associated HIV by pDCs may represent an important host strategy to overcome the poor detection of cell-free virions

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.