Abstract
Human immunodeficiencey virus, type 1 (HIV-1) encodes three proteins, Nef, Vpu, and gp160, that down-modulate surface expression of the CD4 receptor during viral infection. In the present study, we have investigated the role of CD4 down-modulation in the HIV-1 infection cycle, primarily from the perspective of Vpu function. We report here that, like Nef, Vpu-mediated CD4 degradation modulates positively HIV-1 infectivity. Our data reveal that accumulation of CD4 at the cell surface of Vpu-deficient HIV-1-producing cells leads to an efficient recruitment of CD4 into virions and to an impairment of viral infectivity. This CD4-mediated inhibition of viral infectivity was not observed when a CD4 mutant unable to bind Env gp120 was used or when VSV-G glycoprotein was utilized to pseudotype viruses, suggesting that an interaction between CD4 and gp120 is required for interference. Indeed, protein analysis of Vpu-defective viral particles reveals that CD4 recruitment is associated with an increased formation of gp120-CD4 complexes at the virion surface. Interestingly, we did not detect any difference at the level of total virion-associated Env glycoproteins between wild-type and Vpu-defective virus, indicating that accumulation of CD4 at the cell surface and recruitment of CD4 into Vpu-defective HIV-1 particles exert a negative effect on viral infectivity, most likely by promoting the formation of nonfunctional gp120-CD4 complexes at the virion surface. Finally, we show that both Vpu- and Nef-induced CD4 down-modulation activities are required for production of fully infectious particles in CD4+ T cell lines and primary cells, an observation that has clear implications for viral spread in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.