Abstract

The wobbler mouse is an animal model for human motor neuron disease, such as amyotrophic lateral sclerosis (ALS). The spontaneous, recessive wobbler mutation causes degeneration of upper and lower motor neurons leading to progressive muscle weakness with striking similarities to the ALS pathology. The wobbler mutation is a point mutation affecting Vps54, a component of the Golgi-associated retrograde protein (GARP) complex. The GARP complex is a ubiquitously expressed Golgi-localized vesicle tethering complex, tethering endosome-derived vesicles to the trans Golgi network. The wobbler point mutation leads to a destabilization of the Vps54 protein and thereby the whole GARP complex. This effectuates impairments of the retrograde vesicle transport, mis-sorting of Golgi- and endosome localized proteins and on the long run defects in Golgi morphology and function. It is currently largely unknown how the destabilization of the GARP complex interferes with the pathological hallmarks, reported for the wobbler motor neuron degeneration, like neurofilament aggregation, axonal transport defects, hyperexcitability, mitochondrial dysfunction, and how these finally lead to motor neuron death. However, the impairments of the retrograde vesicle transport and the Golgi-function appear to be critical phenomena in the molecular pathology of the wobbler motor neuron disease.

Highlights

  • Vps54 was connected with the wobbler motor neuron degeneration by positional cloning (Schmitt-John et al, 2005; Figures 1A,B)

  • Vps54 was found to be a component of the Golgi-associated retrograde protein (GARP) complex (Conibear and Stevens, 2000; Figure 1C) and a mammalian homolog was reported (Liewen et al, 2005)

  • The GARP complex belongs to the CATCHR group of multi subunit tethering complexes (MTCs) like Dsl1, COG- and Exocyst complexes (Bonifacino and Hierro, 2011) and tethers endosome derived vesicles to the trans Golgi network

Read more

Summary

Introduction

Vps54 was connected with the wobbler motor neuron degeneration by positional cloning (Schmitt-John et al, 2005; Figures 1A,B). Vps54 was found to be a component of the Golgi-associated retrograde protein (GARP) complex (Conibear and Stevens, 2000; Figure 1C) and a mammalian homolog was reported (Liewen et al, 2005).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.