Abstract
Lipophagy is a ubiquitous mechanism for degradation of lipid droplets (LDs) in lysosomes. Autophagy receptors selectively target organelles for lysosomal degradation. The selective receptor for lipophagy remains elusive. Using mouse liver phosphoproteomics and human liver transcriptomics, we identify vacuolar-protein-sorting-associated protein 4A (VPS4A), a member of a large family AAA+ ATPases, as a selective receptor for lipophagy. We show that phosphorylation of VPS4A on Ser95,97 and its localization to LDs in response to fasting drives lipophagy. Imaging/three-dimensional (3D) reconstruction and biochemical analyses reveal the concomitant degradation of VPS4A and LDs in lysosomes in an autophagy-gene-7-sensitive manner. Either silencing VPS4A or targeting VPS4AS95,S97 phosphorylation or VPS4A binding to LDs or LC3 blocks lipophagy without affecting other forms of selective autophagy. Finally, VPS4A levels and markers of lipophagy are markedly reduced in human steatotic livers-revealing a fundamental role of VPS4A as the lipophagy receptor in mice and humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.