Abstract

Membrane contact sites (MCSs) between the endoplasmic reticulum (ER) and mitochondria are emerging as critical hubs for diverse cellular events, and alterations in the extent of these contacts are linked to neurodegenerative diseases. However, the mechanisms that control ER–mitochondria interactions are so far elusive. Here, we demonstrate a key role of vacuolar protein sorting–associated protein 13D (VPS13D) in the negative regulation of ER–mitochondria MCSs. VPS13D suppression results in extensive ER–mitochondria tethering, a phenotype that can be substantially rescued by suppression of the tethering proteins VAPB and PTPIP51. VPS13D interacts with valosin-containing protein (VCP/p97) to control the level of ER-resident VAPB at contacts. VPS13D is required for the stability of p97. Functionally, VPS13D suppression leads to severe defects in mitochondrial morphology, mitochondrial cellular distribution, and mitochondrial DNA synthesis. Together, our results suggest that VPS13D negatively regulates the ER–mitochondria MCSs, partially through its interactions with VCP/p97.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.