Abstract

Recently it has been recognized that bacteriophages, the natural predators of bacteria can be used efficiently in modern biotechnology. They have been proposed as alternatives to antibiotics for many antibiotic resistant bacterial strains. Phages can be used as biocontrol agents in agriculture and petroleum industry. Moreover, phages are used as vehicles for vaccines both DNA and protein, for the detection of pathogenic bacterial strain, as a display system for many proteins and antibodies. Bacteriophages are diverse group of viruses which are easily manipulated and therefore they have potential uses in biotechnology, research, and therapeutics. The aim of this review article is to enable the wide range of researchers, scientists, and biotechnologist who are putting phages into practice, to accelerate the progress and development in the field of biotechnology (Hag, Chaudhry, Akhtar, Andleeb & Qadri, 2012). Bacteriophage research continues to break new ground in our understanding of the basic molecular mechanisms of gene action and biological structure. The abundance of research is growing so rapidly. The enrichment culture technique creates conditions that favor replication of specific bacterial phages. Phages are obligate intracellular parasites, and large numbers of a desired phage can be obtained by adding host bacteria and bacterial media to an environmental sample. By seeding the sample with host bacteria and using nutritional conditions optimized for bacterial growth, the phages that are specific to that bacterial species will infect the bacterial cells and replicate to higher concentrations. These phages can then be isolated at much higher frequency than with direct plating. This protocol is for isolation of phages specific to Mycobacteriumsmegmatis [1].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call