Abstract

The POU homeobox gene unc-86 specifies many neuroblast and neural fates in the developing C. elegans nervous system. Genes regulated by unc-86 are mostly unknown. Here we describe a genetic strategy for the identification of downstream pathways regulated by unc-86. We activate UNC-86 transcription activity by inserting the VP16 activation domain into an unc-86 genomic clone that bears all regulatory sequences necessary for normal expression in C. elegans. unc-86/VP16 complements unc-86 mutations in the specification of neuroblast and neural cell fates, but displays novel genetic activities: it can suppress non-null mutations in the downstream genes mec-3 and mec-7 that are necessary for mechanosensory neuron differentiation and function. These data suggest that UNC-86/VP16 increases the expression of mec-3 and mec-7 to compensate for the decreased activities of mutant MEC-3 or MEC-7 proteins. The suppression of mutations in downstream genes by an activated upstream transcription factor should be a general strategy for the identification of genes in transcriptional cascades. unc-86/VP16 also causes neural migration and pathfinding defects and novel behavioral defects. Thus, increased or unregulated expression of genes downstream of unc-86 can confer novel neural phenotypes suggestive of roles for unc-86-regulated genes in neural pathfinding and function. Genetic suppression of these unc-86/VP16 phenotypes may identify the unc-86 downstream genes that mediate these events in neurogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.