Abstract

AbstractIn this work, we present for the first time the Lyman α intensities measured by Voyager 1/UVS in 2003–2014 (at 90–130 AU from the Sun). During this period Voyager 1 measured the Lyman α emission in the outer heliosphere at an almost fixed direction close to the upwind (i.e.“ toward the interstellar flow). The data show an unexpected behavior in 2003–2009: the ratio of observed intensity to the solar Lyman α flux is almost constant. Numerical modeling of these data is performed in the frame of a state‐of‐the‐art self‐consistent kinetic‐MHD model of the heliospheric interface. The model results, for various interstellar parameters, predict a monotonic decrease of intensity not seen in the data. We propose two possible scenarios that explain the data qualitatively. The first is the formation of a dense layer of hydrogen atoms near the heliopause. Such a layer would provide an additional backscattered Doppler‐shifted Lyman α emission, which is not absorbed inside the heliosphere and may be observed by Voyager. About 35 R of intensity from the layer is needed. The second scenario is an external nonheliospheric Lyman α component, which could be galactic or extragalactic. Our parametric study shows that ∼25 R of additional emission leads to a good qualitative agreement between the Voyager 1 data and the model results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call