Abstract
BackgroundTranslation of predictive and prognostic image‐based learning models to clinical applications is challenging due in part to their lack of interpretability. Some deep‐learning‐based methods provide information about the regions driving the model output. Yet, due to the high‐level abstraction of deep features, these methods do not completely solve the interpretation challenge. In addition, low sample size cohorts can lead to instabilities and suboptimal convergence for models involving a large number of parameters such as convolutional neural networks.PurposeHere, we propose a method for designing radiomic models that combines the interpretability of handcrafted radiomics with a sub‐regional analysis.Materials and methodsOur approach relies on voxel‐wise engineered radiomic features with average global aggregation and logistic regression. The method is illustrated using a small dataset of 51 soft tissue sarcoma (STS) patients where the task is to predict the risk of lung metastasis occurrence during the follow‐up period.ResultsUsing positron emission tomography/computed tomography and two magnetic resonance imaging sequences separately to build two radiomic models, we show that our approach produces quantitative maps that highlight the signal that contributes to the decision within the tumor region of interest. In our STS example, the analysis of these maps identified two biological patterns that are consistent with STS grading systems and knowledge: necrosis development and glucose metabolism of the tumor.ConclusionsWe demonstrate how that method makes it possible to spatially and quantitatively interpret radiomic models amenable to sub‐regions identification and biological interpretation for patient stratification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.