Abstract

Objective. Clinical outcomes after proton therapy have shown some variability that is not fully understood. Different approaches have been suggested to explain the biological outcome, but none has yet provided a comprehensive and satisfactory rationale for observed toxicities. The relatively recent transition from passive scattering (PS) to pencil beam scanning (PBS) treatments has significantly increased the voxel-wise dose rate in proton therapy. In addition, the dose rate distribution is no longer uniform along the cross section of the target but rather highly heterogeneous, following the spot placement. We suggest investigating dose rate as potential contributor to a more complex proton RBE model. Approach. Due to the time structure of the PBS beam delivery the instantaneous dose rate is highly variable voxel by voxel. Several possible parameters to represent voxel-wise dose rate for a given clinical PBS treatment plan are detailed. These quantities were implemented in the scripting environment of our treatment planning system, and computations experimentally verified. Sample applications to treated patient plans are shown. Main results. Computed dose rates we experimentally confirmed. Dose rate maps vary depending on which method is used to represent them. Mainly, the underlying time and dose intervals chosen determine the topography of the resultant distributions. The maximum dose rates experienced by any target voxel in a given PBS treatment plan in our system range from ∼100 to ∼450 Gy(RBE)/min, a factor of 10–100 increase compared to PS. These dose rate distributions are very heterogeneous, with distinct hot spots. Significance. Voxel-wise dose rates for current clinical PBS treatment plans vary greatly from clinically established practice with PS. The exploration of different dose rate measures to evaluate potential correlations with observed clinical outcomes is suggested, potentially adding a missing component in the understanding of proton relative biological effectiveness (RBE).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call