Abstract

Efficient representation of point clouds is fundamental for LiDAR-based 3D object detection. While recent grid-based detectors often encode point clouds into either voxels or pillars, the distinctions between these approaches remain underexplored. In this paper, we quantify the differences between the current encoding paradigms and highlight the limited vertical learning within. To tackle these limitations, we propose a hybrid detection framework named Voxel-Pillar Fusion (VPF), which synergistically combines the unique strengths of both voxels and pillars. To be concrete, we first develop a sparse voxel-pillar encoder that encodes point clouds into voxel and pillar features through 3D and 2D sparse convolutions respectively, and then introduce the Sparse Fusion Layer (SFL), facilitating bidirectional interaction between sparse voxel and pillar features. Our computationally efficient, fully sparse method can be seamlessly integrated into both dense and sparse detectors. Leveraging this powerful yet straightforward representation, VPF delivers competitive performance, achieving real-time inference speeds on the nuScenes and Waymo Open Dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.