Abstract

The resolution limit imposed by radiation damage is quantified in terms of a voxel dose-limited resolution (DLR), applicable to small features within a thick specimen. An analytical formula for this DLR is derived and applied to bright-field mass-thickness contrast from organic (polymer or biological) specimens of thickness between 400 nm and 20 µm. For a permissible dose of 330 MGy (typical of frozen-hydrated tissue), the TEM or STEM image resolution is determined by radiation damage rather than by lens aberrations or beam-broadening effects, which can be restricted by use of a small angle-limiting aperture. DLR is improved by a up to factor of 2 by increasing the primary-electron energy from 300 keV to 3 MeV, or by up to a factor of 3 by heavy-metal staining. For stained samples, a higher electron fluence allows better resolution but the improvement is modest because the voxel DLR is proportional to the 1/4 power of electron dose. The relevance of voxel and columnar DLR is discussed, for both thick and thin samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.