Abstract

The human brain is organized as a complex, hierarchical network. However, the structural covariance patterns among brain regions and the underlying biological substrates of such covariance networks remain to be clarified. The present study proposed a novel individualized structural covariance network termed voxel-based texture similarity networks (vTSNs) based on 76 refined voxel-based textural features derived from structural magnetic resonance images. Validated in three independent longitudinal healthy cohorts (40, 23, and 60 healthy participants, respectively) with two common brain atlases, we found that the vTSN could robustly resolve inter-subject variability with high test-retest reliability. In contrast to the regional-based texture similarity networks (rTSNs) that calculate radiomic features based on region-of-interest information, vTSNs had higher inter- and intra-subject variability ratios and test-retest reliability in connectivity strength and network topological properties. Moreover, the Spearman correlation indicated a stronger association of the gene expression similarity network (GESN) with vTSNs than with rTSNs (vTSN: r = 0.600, rTSN: r = 0.433, z = 39.784, P < 0.001). Hierarchical clustering identified 3 vTSN subnets with differential association patterns with 13 coexpression modules, 16 neurotransmitters, 7 electrophysiology, 4 metabolism, and 2 large-scale structural and 4 functional organization maps. Moreover, these subnets had unique biological hierarchical organization from the subcortex-limbic system to the ventral neocortex and then to the dorsal neocortex. Based on 424 unrelated, qualified healthy subjects from the Human Connectome Project, we found that vTSNs could sensitively represent sex differences, especially for connections in the subcortex-limbic system and between the subcortex-limbic system and the ventral neocortex. Moreover, a multivariate variance component model revealed that vTSNs could explain a significant proportion of inter-subject behavioral variance in cognition (80.0 %) and motor functions (63.4 %). Finally, using 494 healthy adults (aged 19–80 years old) from the Southwest University Adult Lifespan Dataset, the Spearman correlation identified a significant association between aging and vTSN strength, especially within the subcortex-limbic system and between the subcortex-limbic system and the dorsal neocortex. In summary, our proposed vTSN is robust in uncovering individual variability and neurobiological brain processes, which can serve as biologically plausible measures for linking biological processes and human behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.