Abstract

Vowel durations are most often utilized in studies addressing specific issues in phonetics. Thus far this has been hampered by a reliance on subjective, labor-intensive manual annotation. Our goal is to build an algorithm for automatic accurate measurement of vowel duration, where the input to the algorithm is a speech segment contains one vowel preceded and followed by consonants (CVC). Our algorithm is based on a deep neural network trained at the frame level on manually annotated data from a phonetic study. Specifically, we try two deep-network architectures: convolutional neural network (CNN), and deep belief network (DBN), and compare their accuracy to an HMM-based forced aligner. Results suggest that CNN is better than DBN, and both CNN and HMM-based forced aligner are comparable in their results, but neither of them yielded the same predictions as models fit to manually annotated data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.