Abstract

The paper presents the influence of varying immediate roof thickness on the lower strong roof strata movement and failure pattern in longwall coal mining with large mining height. The investigation is based on 58 geological drill holes and hydraulic shield pressure measurements around the longwall Panel 42105 of the Buertai Mine in Inner Mongolia Autonomous Region, China. The longwall Panel 42105 is characterized by relatively soft immediate roof strata of varying thickness superposed by strong strata, herein defined as lower strong roof. A voussoir beam model is adopted to interpret the structural movement of the lower strong roof strata and shield pressure measurements. It is shown that when the immediate roof is relatively thick, the broken overlying lower strong roof tends to form a stable voussoir beam with previously broken layer, thus not exerting high pressure on the hydraulic shield and working face. When the immediate roof is relatively thin, the broken overlying lower strong roof tends to behave as a cantilever beam, thus exerting higher pressure on the hydraulic shield and working face. Comparison of model predictions with measured time-weighted average shield pressure (TWAP) shows good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call