Abstract
We study simple interacting particle systems on heterogeneous networks, including the voter model and the invasion process. These are both two-state models in which in an update event an individual changes state to agree with a neighbor. For the voter model, an individual "imports" its state from a randomly chosen neighbor. Here the average time TN to reach consensus for a network of N nodes with an uncorrelated degree distribution scales as N mu1 2/mu2, where mu k is the kth moment of the degree distribution. Quick consensus thus arises on networks with broad degree distributions. We also identify the conservation law that characterizes the route by which consensus is reached. Parallel results are derived for the invasion process, in which the state of an agent is "exported" to a random neighbor. We further generalize to biased dynamics in which one state is favored. The probability for a single fitter mutant located at a node of degree k to overspread the population-the fixation probability--is proportional to k for the voter model and to 1k for the invasion process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.