Abstract
The voter model is a toy model of consensus formation based on nearest-neighbor interactions. A voter sits at each vertex in a hypercubic lattice (of dimension d) and is in one of two possible opinion states. The opinion state of each voter flips randomly, at a rate proportional to the fraction of the nearest neighbors that disagree with the voter. If the voters are initially independent and undecided, the model is known to lead to a consensus if and only if . In this paper the model is subjected to stochastic resetting: the voters revert independently to their initial opinion according to a Poisson process of fixed intensity (the resetting rate). This resetting prescription induces kinetic equations for the average opinion state and for the two-point function of the model. For initial conditions consisting of undecided voters except for one decided voter at the origin, the one-point function evolves as the probability of presence of a diffusive random walker on the lattice, whose position is stochastically reset to the origin. The resetting prescription leads to a non-equilibrium steady state. For an initial state consisting of independent undecided voters, the density of domain walls in the steady state is expressed in closed form as a function of the resetting rate. This function is differentiable at zero if and only if .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.