Abstract
This work studies the three-dimensional Stokes problem expressed in terms of vorticity and velocity variables. We make general assumptions on the regularity and the topological structure of the flow domain: the boundary is Lipschitz and possibly non-connected and the flow domain may be multiply connected. Upon introducing a new variational space for the vorticity, five weak formulations of the Stokes problem are obtained. All the formulations are shown to lead to well-posed problems and to be equivalent to the primitive variable formulation. The various formulations are discussed by interpreting the test functions for the vorticity (resp. velocity) equation as vector potentials for the velocity (resp. vorticity). Of the five sets of boundary conditions derived in the paper, three are already known, but only for domains with a trivial topological structure, while the remaining two are new. Copyright © 1999 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.