Abstract

A one-layer numerical model was developed to analyze the vorticity dynamics of the seasonal variations of currents in the Southern Ocean. The model includes the continental geometry and bathymetry of the Southern Ocean and is forced by monthly climatological wind stress. Five cases are considered that compare (i) circulation over a flat bottom to that with bathymetry, (ii) effects of zonally averaged wind stress forcing versus the climatological forcing and (iii) anomaly wind stress (winds with the annual mean removed) versus the fun stress. The individual terms in the vorticity conservation equation are calculated from the model solution along two latitude lines; 57.5°S, which passes through Drake Passage, and 43.5°S, which is in the subtropical gyre. In the zonal part of the flat bottom simulation, the curl of the surface stress balances bottom stress curl. However, in Drake Passage, beta (advection of planetary vorticity) balances bottom loss—the western boundary balance. Such vorticity interactions depend on the partial barrier of South America and, thus, do not occur in zonal channel models. The removal of vorticity occurs throughout the Southern Ocean for the seasonally varying winds but the mean circulation is balanced mainly by losses near Drake Passage. The location of the Antarctic Circumpolar Current (ACC) is controlled by the lip of South America rather than the structure of the wind. The seasonal changes in the model surface elevation in Drake Passage occur largely in the southern part of the passage, in agreement with pressure observations. The calculated ACC transport is similar for climatological and zonally averaged winds but the structure of the forced circulation is rather different for the two cases. Bottom topography changes the vorticity interactions so that the largest effect occur where the flow is forced over bathymetry creating relative vorticity by stretching, which is then removed by bottom friction. The major loss in the model occurs near Drake Passage, although there are smaller losses at other locations along 57.5°S. Bathymetry provides a strong counterforce to the wind stress and the transport is reduced by a factor of ten compared to the comparable uniform depth simulation. Friction plays a secondary role by determining the width of the currents and the spinup time but has only a weak effect on the total transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.