Abstract

Mesoscale convective vortices (MCVs) often cause rainstorms. To deepen our understanding of MCV formation mechanisms, reanalysis data from the National Centers for Environmental Prediction and the Weather Research and Forecasting model were used to simulate MCV activity in East China in August 2009. The simulations could reproduce the MCV and associated convective activities well. The vorticity budget and MCV formation mechanisms were then analyzed. The results show that the planetary vorticity advection is much smaller than other terms of the vorticity equation. The MCV initiates in the convective precipitation region and below 800 hPa. When the MCV initiates, there are vorticity-variation couplets within the vortex, and the MCV moves towards the positive vorticity-variation direction. In positive vorticity-variation areas, the divergence term and the tilting term are the vorticity source. The equilibrium response to diabatic heating is one of the forming mechanisms of this MCV. The latent-heating level is relatively low in this MCV case, and the MCV-forming level is also relatively low. Another forming mechanism of this MCV is the tilting of the horizontal vortex tube caused by the upward motion. At the MCV initiation, the perturbation scale of the vortex is found to be larger than the Rossby deformation radius, and thus the MCV could have a long duration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call