Abstract

Abstract Flow reversals during relaxation of the equatorward wind on the northern California shelf are studied with observations and a simple numerical model. Data from the CODE experiment are used to document the changes in the cross-shelf profiles of alongshelf currents and potential vorticity when the wind forcing changes from upwelling-favorable to near-zero. Upwelling vorticity dynamics are considered using a simple equation, where also the importance of stress curls is discussed. During the wind relaxation events, the usually equatorward flow reveres to poleward on the inner shelf, resulting in a region of high shear and occasionally a localized maximum in potential vorticity on the shelf. In the course of such an episode, a single eddylike structure on the shelf was observed with satellite imagery. In order to simulate the basic dynamics of the flow reversals and instability, a contour dynamics model is developed for barotropic flow on an exponentially sloping bottom, in which potential vorticity i...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.