Abstract

Two models are presented for the motion of vortices near gaps in infinitely long barriers. The first model considers a line vortex for which the exact nonlinear trajectories satisfying the governing two-dimensional Euler equations are obtained analytically. The second model considers a finite-area patch of constant vorticity and is based on conformal mapping and the numerical method of contour surgery. The two models enable a comparison of the trajectories of line vortices and vortex patches. The case of a double gap formed by an island lying between two headlands is considered in detail. It is noted that Kelvin's theorem constrains the circulation around the island to be a constant and thus forces a time-dependent volume flux between the islands and the headlands. When the gap between the island and a headland is small this flux requires arbitrarily large flow speeds through the gap. In most examples the centroid of the patch is constrained to follow closely the trajectory of a line vortex of the same circulation. Exceptions occur when the through-gap flow forces the vortex patch close to an edge of the island where it splits into two with only part of the vortex passing through the gap. In general the part squeezing through a narrow gap returns to near-circular to have a diameter significantly larger than the gap width.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.