Abstract

In this work we are interested in extreme vortex states leading to the maximum possible growth of palinstrophy in 2D viscous incompressible flows on periodic domains. This study is a part of a broader research effort motivated by the question about the finite-time singularity formation in the 3D Navier–Stokes system and aims at a systematic identification of the most singular flow behaviors. We extend the results reported in Ayala and Protas (2014 J. Fluid Mech. 742 340–67) where extreme vortex states were found leading to the growth of palinstrophy, both instantaneously and in finite time, which saturates the estimates obtained with rigorous methods of mathematical analysis. Here we uncover the vortex dynamics mechanisms responsible for such extreme behavior in time-dependent 2D flows. While the maximum palinstrophy growth is achieved at short times, the corresponding long-time evolution is characterized by some nontrivial features, such as vortex scattering events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.