Abstract

Linear and nonlinear vortex perturbations of a gravitating gaseous disk are examined in the geostrophic and post-geostrophic approximations. The structures of the isolated monopole and dipole vortex (modons) solutions of these equations are studied. Two types of mass distributions in dipole vortices are found. The first type of modon is characterized by an asymmetrically positioned single circular densification and one rarefaction. The second type is characterized by two asymmetrically positioned densifications and two rarefactions, where the second densification-rarefaction pair is crescent shaped. The constant density contours of a dipole vortex in a light gas disk coincide with the streamlines of the vortex; in a self-gravitating disk the constant density contours in the vortex do not coincide with streamlines. Possible manifestations of monopole and dipole vortices in astrophysical objects are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.