Abstract

Flange height is between the geometric features that contribute efficiently to improve the diffuser aerodynamic performances. Results obtained from wind tunnel experiments, particle image velocimetry (PIV) measurements, and numerical simulations reveal that at the diffuser inlet section, the wind velocity increases as the flange height increases. Nevertheless, there is an optimal ratio (flange height/inlet section diameter, Hopt/Da ≈ 0.15) beyond it, the flange height effect on the velocity increase diminishes. This behavior can be explained by both the positions of the two contra-rotating vortices generated downstream of the diffuser and the pressure coefficient at their centers. Indeed, it was found that, as the flange height increases, the two vortices move away from each other in the flow direction and since the flange height exceeds (Hopt/Da), they became too distant from each other and from the flange. While the pressure coefficients at the vortices' centers increase with (H/Da), attain a maximum when (Hopt/Da) is reached, and then decrease. This suggests that the wind velocity increase depends on the pressure coefficient at the vortices' centers. Therefore, it depends on the vortices' locations which are in turn controlled by the flange height. In practice, this means that the diffuser could be more efficient if equipped with a control system able to hold the vortices too near from the flange.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call