Abstract

Abstract Numerical simulation and flow visualization were performed to study the dynamical behavior of vortices generated in channels with two different geometries, i.e., a periodically converging–diverging channel and serpentine channel, both having sinusoidal wavy walls. This system for pulsatile flow is used to enhance heat and mass transfer in very viscous liquids. The numerical results predict well the dynamical behavior of vortices and agree with the flow visualizations. For both channels, the vortex expands in each furrow of the channel walls during the deceleration phase and shrinks during the acceleration phase, which leads to fluid exchange between the vortex and the mainstream. The time-averaged vortex strength and wall shear stresses increase, as the frequency of fluid oscillation increases under a fixed oscillatory fraction of the flow rate. However, above a certain value of the frequency, they reversely decrease due to viscous effects. This frequency for the serpentine channel is smaller than that for the converging–diverging channel. The channel geometries are found to have an important effect of the flow characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call