Abstract
We discuss the physical picture of thick vortices as the mechanism responsible for confinement at arbitrarily weak coupling in SU(2) gauge theory. By introducing appropriate variables on the lattice we distinguish between thin, thick and `hybrid' vortices, the latter involving Z(2) monopole loop boundaries. We present numerical lattice simulation results that demonstrate that the full SU(2) string tension at weak coupling arises from the presence of vortices linked to the Wilson loop. Conversely, excluding linked vortices eliminates the confining potential. The numerical results are stable under alternate choice of lattice action as well as a smoothing procedure which removes short distance fluctuations while preserving long distance physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.