Abstract

Vortices are commonly observed in the context of classical hydrodynamics: from whirlpools after stirring the coffee in a cup to a violent atmospheric phenomenon such as a tornado, all classical vortices are characterized by an arbitrary circulation value of the local velocity field. On the other hand the appearance of vortices with quantized circulation represents one of the fundamental signatures of macroscopic quantum phenomena. In two-dimensional superfluids quantized vortices play a key role in determining finite-temperature properties, as the superfluid phase and the normal state are separated by a vortex unbinding transition, the Berezinskii-Kosterlitz-Thouless transition. Very recent experiments with two-dimensional superfluid fermions motivate the present work: we present theoretical results based on the renormalization group showing that the universal jump of the superfluid density and the critical temperature crucially depend on the interaction strength, providing a strong benchmark for forthcoming investigations.

Highlights

  • Vortices are commonly observed in the context of classical hydrodynamics: from whirlpools after stirring the coffee in a cup to a violent atmospheric phenomenon such as a tornado, all classical vortices are characterized by an arbitrary circulation value of the local velocity field

  • Very recent experiments with two-dimensional superfluid fermions motivate the present work: we present theoretical results based on the renormalization group showing that the universal jump of the superfluid density and the critical temperature crucially depend on the interaction strength, providing a strong benchmark for forthcoming investigations

  • In the present work we have analyzed the role of vortex proliferation in determining the finite-temperature properties of a 2D interacting Fermi gas, throughout the BCS-BEC crossover, as the fermion-fermion interaction strength is varied

Read more

Summary

Introduction

Vortices are commonly observed in the context of classical hydrodynamics: from whirlpools after stirring the coffee in a cup to a violent atmospheric phenomenon such as a tornado, all classical vortices are characterized by an arbitrary circulation value of the local velocity field. The quantization of circulation is a peculiar consequence of the existence of an underlying compact real field, whose spatial gradient determines the local superfluid velocity of the system[13,14] This compact real field, the so-called Nambu-Goldstone field, is the phase angle of the complex bosonic field which describes, in the case of attractive fermions, strongly-correlated Cooper pairs of fermions with opposite spins[14]. TBKT, on the other hand, vortex-antivortex pairs unbind, free quantized vortices proliferate, and the system loses its superfluid properties with exponential decay of coherence. Within this scenario it is clear that quantized vortices play a key role in determining the finite-temperature properties of a 2D superfluid. Recent experiments[20,21,22,23] deal with 2D attractive Fermi gases in the crossover from the weak-coupling BCS regime of largely overlapping Cooper pairs to the strong-coupling BEC regime of composite bosons and provide motivation for the present theoretical investigation

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.