Abstract

The vortex system in a high-T_c superconductor has been studied numerically using the mapping to 2D bosons and the path-integral Monte Carlo method. We find a single first-order transition from an Abrikosov lattice to an entangled vortex liquid. The transition is characterized by an entropy jump dS = 0.4 k_B per vortex and layer (parameters for YBCO) and a Lindemann number c_L = 0.25. The increase in density at melting is given by d\rho = 6.0*10^{-4} / \lambda(T)^2. The vortex liquid corresponds to a bosonic superfluid, with \rho_s = \rho even in the limit \lambda -> \infty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call