Abstract

An OA209 airfoil equipped with an innovative deployable vortex generator device is investigated through static stall numerical simulations. Computations are performed by solving the Reynolds Averaged Navier-Stokes equations with the elsA code, which is developed by the Office National d'Etudes et de Recherche Aérospatiale–the French Aerospace Lab. Deployable vortex generator computations are compared to a wide set of experimental data, and the actuator effect on the airfoil boundary layer is highlighted. Detailed flow analysis provides an understanding of the vortex generation mechanisms, and the influence of initial vortex interactions and merging over the control effect is shown. The influence of the deployable vortex generator thickness on static stall control efficiency is finally investigated through simulations featuring a deployable vortex generator of reduced thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.