Abstract
We present a computational study of the fluid dynamics in healthy semicircular canals (SCCs) and the utricle. The SCCs are the primary sensors for angular velocity and are located in the vestibular part of the inner ear. The SCCs are connected to the utricle that hosts the utricular macula, a sensor for linear acceleration. The transduction of angular motion is triggered by the motion of a fluid called endolymph and by the interaction of this fluid with the sensory structures of the SCC. In our computations, we observe a vortical flow in the utricle and in the ampulla (the enlarged terminal part of the SCCs) which can lead to flow velocities in the utricle that are even higher than those in the SCCs. This is a fundamentally new result which is in contrast to the common belief that the fluid velocities in the utricle are negligible from a physiological point of view. Moreover, we show that the wall shear stresses in the utricle and the ampulla are maximized at the positions of the sensory epithelia. Possible physiological and clinical implications are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.