Abstract

Previous studies reported that the hydrodynamic propulsion of the water strider also results from transferring momentum to the underlying fluid through hemispherical dipolar vortices shed by its driving legs. However, there are no accuracy experimental measurements of these vortical structures to prove the mechanics of vortical propulsion. Here, we reveal the vortical structures by reporting the simultaneous measurements of the water strider’s motion and the fluid velocity field with the high-speed PIV, and proposing a new method of calculating the vortex kinetic energy and vortex momentum. We found that the asymmetrical vortical structure in each dipolar vortex, generated by one driving stroke, propels the water strider forward, and the outer elliptic vortex is weaker than the inner circular vortex. The movement of the dipolar vortex is divided into two stages: (1) translating backward and (2) return curving. In this way, the water strider obtains the maximum velocity with minimal consumption of energy. The fluid vortical momentum, generated by the driving stroke, accounts for about 64–90% of the water strider’s momentum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.