Abstract

Understanding the interaction between fluid and structures under various fluid conditions is critical for engineering applications, with vortex-induced vibration (VIV) being a significant area of research. This study presents a comprehensive numerical investigation on the VIV behaviors of functionally graded (FG) graphene origami (GOri)-enabled auxetic metamaterial (GOEAM) splitter plates attached to a circular cylinder by employing the finite element analysis. The splitter plate is composed of multiple GOEAM layers with the material properties possessing a gradient variation along the thickness direction. The local mesh quality is monitored and improved by Yeoh smoothing. The present work is focused on the effect of the auxetic properties of GOEAM on plate vibrations, the influence of plate length on wake patterns, and the effect of fluid loads on the cylinder–plate body and vortex pattern. The study reveals that: (1) the plate structure with HGRX-WGRX metamaterial distribution pattern with high elastic moduli in surface layers exhibits low deflection amplitudes, (2) shorter plates intensify vortices while longer plates reduce vortex prevalence, (3) the natural frequencies of both FG-GOEAM and pure metallic plates are found to be well above the vortex shedding frequency and as such, the fluid loads have a negligible effect on the cylinder–plate body and vortex patterns. These insights offer an in-depth understanding of fluid-structure interactions and valuable knowledge for the design and optimisation of graphene based metamaterial structures in engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.