Abstract
We exploit the giant cross-Kerr nonlinearity of electromagnetically induced transparency (EIT) system in ultracold atoms to implement vortex-based multimode manipulation of stored light at low light levels. Using image-bearing signal light fields with angular intensity profiles, sinusoidal grating structures with phase-only modulation can be azimuthally imprinted on the stored probe light field, where the nonlinear absorption loss can be ignored. Upon retrieval of the probe light, collinearly superimposed vortex modes can be generated in the far field. Considering the finite size of atomic gas, the Fraunhofer diffraction patterns of the retrieved probe fields and their spiral spectra are numerically investigated, where the diffracted vortex modes can be efficiently controlled by tuning the weak signal fields. Our studies not only exhibit a fundamental diffraction phenomenon with angular grating structures in EIT system, but also provide a fascinating opportunity to realize multidimensional quantum information processing for stored light in an all-optical manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.