Abstract

The application of natural refrigerant CO2 is of great significance to reduce the greenhouse effect and ozone depletion. Transcritical CO2 heat pump cycle is presently an important aspect of natural refrigerant alternatives research. In this paper, a vortex tube expansion transcritical CO2 heat pump cycle is established and compared to that of the transcritical CO2 refrigeration cycle with throttle valve. Thermodynamic analysis results indicate that the system performance of vortex tube expansion transcritical CO2 heat pump cycle is better than the transcritical CO2 heat pump cycle with throttle valve, and the COPh improvement is 5.8%~13.9% at given conditions. The gas-cooler outlet temperature has a great impact on the system performance, there is a higher COPh improvement when the cycle at lower evaporation temperature or higher gas-cooler outlet temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.